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ASYMMETRY IN REAL FUNCTIONS THEORY

JACEK MAREK JĘDRZEJEWSKI

Abstract

Since the beginning of the XX century many authors considered characterizations of
local properties for real functions of a real variable which have been defined as global
properties. We present a short survey of local properties of the well known global ones
and consider of how small/big the set of asymmetrical behaviour of a function must be.

1. Introduction

We shall consider only real functions defined in an open interval. When
we use topological terminology, then it is applied in the sense of natural
topology in the set of real numbers (or in its subsets).

Limit numbers of a real function defined in subsets of R have been con-
sidered in many articles by many mathematicians. Starting from the classi-
cal result of W. H. Young [20] concerning asymmetry of functions through
problems of usual limit numbers, J. M. Jędrzejewski and W. Wilczyński
[12], approximate limit numbers discussed by M. Kulbacka [14], L. Belowska
[1], W. Wilczyński [18] and others, problems of qualitative limit numbers
(W. Wilczyński [19]) B-limit numbers (J. M. Jędrzejewski [7], [8], J. M.
Jędrzejewski together with W. Wilczyński [13]) one can come up to a big
monograph on local systems by B. S. Thomson [17].

The first part of our considerations deals with the asymmetry of functions
with respect to limit numbers of different kinds.

Some properties of functions (continuity, Darboux condition and others)
can be characterized globally and locally. For many of those properties we
have theorems which say that a function has this global property if and only
if it has its adequate local property. The second part of the article deals
with some of such properties.

• Jacek M. Jędrzejewski — jacek.m.jedrzejewski@gmail.com
Retired from Pomeranian Academy in Słupsk.
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The last part of the paper is devoted to results obtained by T. Świątkowski
in view of general approach to limit numbers considered originally by B. S.
Thomson and me.

2. Asymmetry of Sets of Limit Numbers

2.1. Limit Numbers of a Real Function. We shall start with the clas-
sical problem called Rome’s Theorem. The theorem was probably the first
one which dealt with arbitrary function. Let us remind necessary definitions
and properties.

Definition 1. (W. H. Young [20]) Let a real function f be defined in an
open interval (a, b). Then a number g (or +∞ or −∞) is called the limit
number of f at a point x0 from (a, b) if there exists a sequence (tn)∞n=1 such
that

(1) tn 6= x0, for each positive integer n,
(2) limn→∞ tn = x0,
(3) limn→∞ f(tn) = g.

If the inequality tn 6= x0 is replaced by tn > x0, then such a limit number
is called the right limit number of f at x0.

If the inequality tn 6= x0 is replaced by tn < x0, then such a limit number
is called the left limit number of f at x0.

• By L+(f, x0) we denote the set of all right limit numbers of f at x0.
• By L−(f, x0) we denote the set of all left limit numbers of f at x0.
• By L(f, x0) we denote the set of all limit numbers of f at x0.

Let us remark that limit numbers can be equivalently defined in the
following way:

Theorem 1. Let a real function f be defined in an open interval (a, b).
Then a number g (or +∞ or −∞) is a limit number of f at a point x0 from
(a, b) if and only if the set{

x ∈ (a, b) : f−1(Ug) ∩ [(x0 − ε, x0 + ε) \ {x0}]
}

is non-empty for each positive ε and each neighbourhood Ug of the point g.

It is obvious that:

Theorem 2. The sets L−(f, x0), L+(f, x0) and L(f, x0) are non-empty and
closed, moreover

L(f, x0) = L−(f, x0) ∪ L+(f, x0)

for any function f : (a, b) −→ R and any x ∈ (a, b).

The main theorem which was announced in Rome at the congress of
mathematicians is stated as follows:
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Theorem 3. Rome’s Theorem on Asymmetry (W. H. Young, 1906) For
any function f : (a, b) −→ R the set{

x ∈ (a, b) : L−(f, x) 6= L+(f, x)
}

is at most countable.

Quite similarly one can say that:

Theorem 4. For any function f : (a, b) −→ R the set

{x ∈ (a, b) : f(x0) /∈ L(f, x)}

is at most countable.

Let us remark that for each countable set E in R there exists a function
f : R −→ R for which

E =
{
x ∈ (a, b) : L−(f, x) 6= L+(f, x)

}
.

It is quite obvious if the set E is finite; if it is infinite it is possible to
define a monotone function, which fulfils the required condition. We shall
construct such a function.

Example 1. Monotone function with infinite set of asymmetry.

Let E = (xn)∞n=1 and the sequence of positive numbers (αn)∞n=1 be such

that the series
∞∑
n=1

αn is convergent. The function

f(x) =
∑

{n :xn<x}

αn

fulfils all the required properties.

2.2. Qualitative Limit Numbers. Following the way as in Theorem 1.
one can define other kinds of limit numbers as qualitative (W. Wilczyński
[19]) or approximative limit numbers (L. Belowska [1], M. Kulbacka [14],
J. Jaskuła [5] and W. Wilczyński [18]) when we define limit numbers using
the above mentioned property.

Definition 2. A number g or +∞ or −∞ is called the qualitative limit
number of a function f at a point x0 if the set{

x ∈ (a, b) : f−1(Ug) ∩ (x0 − ε, x0 + ε)
}

is of the second category for each positive ε and arbitrary neighbourhood Ug
of the point g.
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Definition 3. If the set{
x ∈ (a, b) : f−1(U(g)) ∩ (x0 − ε, x0)

}
is of the second second category for each positive ε, then g is called the left
qualitative limit number of a function f at the point x0.

Similarly, g is called the right qualitative limit number of a function f at
a point x0 if the set{

x ∈ (a, b) : f−1(U(g)) ∩ (x0, x0 + ε)
}

is of the second category for each positive ε and each neighbourhood Ug of
the point g.

• By L+
q (f, x0) we denote the set of all right qualitative limit numbers

of f at x0.
• By L−q (f, x0) we denote the set of all left qualitative limit numbers
of f at x0.
• By Lq(f, x0) we denote the set of all qualitative limit numbers of f
at x0.

Then, similarly as for usual limit numbers one can state:

Theorem 5. For arbitrary real function f on the interval (a, b) and any
x0 from (a, b) the sets Lq(f, x0), L−q (f, x0) and L+

q (f, x0) are non-empty,
closed and

Lq(f, x0) = L−q (f, x0) ∪ L+
q (f, x0).

Considering the sets of qualitative limit numbers we can get the analogue
of Rome’s Theorem, namely:

Theorem 6. For any function f : (a, b) −→ R the set{
x ∈ (a, b) : L−q (f, x) 6= L+

q (f, x)
}

is at most countable.

We can observe that the considered sets are at most countable, it means
that they are rather small with natural topology in the set of real numbers.
The quantity of such sets will be of our main interest. Unfortunately not
always such sets must be countable.

2.3. Approximate Limit Numbers. Several mathematicians considered
approximate limit numbers but we remind basic definitions and properties.

Definition 4. A number g or +∞ or −∞ is called the approximate limit
number of a function f at a point x0 if the set{

x ∈ (a, b) : f−1(U(g)) ∩ [(x0 − ε, x0 + ε)]
}
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has positive upper exterior density at x0 for every open neighbourhood Ug
of the point g and each positive ε.
Definition 5. A number g or +∞ or −∞ is called the left approximate
limit number of a function f at a point x0 if the set{

x ∈ (a, b) : f−1(U(g)) ∩ [(x0 − ε, x0)]
}

has positive upper exterior density at x0 for every open neighbourhood Ug
of the point g and each positive ε.

And similarly, a number g (or +∞, −∞) is called the right approximate
limit number of a function f at a point x0 if the set{

x ∈ (a, b) : f−1(U(g)) ∩ [(x0, x0 + ε)]
}

has positive upper exterior density at x0 for every open neighbourhood Ug
of the point g and each positive ε.

• By L+
a (f, x0) we denote the set of all right approximate limit num-

bers of f at x0.
• By L−a (f, x0) we denote the set of all left approximate limit numbers
of f at x0.
• By La(f, x0) we denote the set of all approximate limit numbers of
f at x0.

Then, similarly as for usual limit numbers one can state:
Theorem 7. For arbitrary real function f on the interval (a, b) and any
x0 from (a, b) the sets La(f, x0), L−a (f, x0) and L+

a (f, x0) are non-empty,
closed and

La(f, x0) = L−a (f, x0) ∪ L+
a (f, x0).

Now considering the sets of approximate limit numbers we can get the
analogue of Rome’s Theorem, but:
Theorem 8. (M. Kulbacka [14]). For any function f : (a, b) −→ R the set{

x ∈ (a, b) : L−a (f, x) 6= L+
a (f, x)

}
is first category set and has measure 0.

This time the sets of the first category which have measure 0 do not char-
acterize the set of asymmetry of functions. J. Jaskuła gave some additional
properties for the set of approximate asymmetry.
Theorem 9. (J. Jaskuła [5]) For any function f : (a, b) −→ R the set{

x ∈ (a, b) : L−a (f, x) 6= L+
a (f, x)

}
is first category and has measure 0, moreover it is of type Fσδσ.1

1W.Wilczyński informed me that the results of J. Jaskuła were a big deeper, i.e. the
set approximate asymmetry is also σ-porous.
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2.4. Generalized Limit Numbers. Let us observe that the class of sets
which are of the first category at the point x0 and the class of positive upper
external density at that point have common properties. When we denote
such a class by B then this class fulfils:

(1) If B ∈ B and E ⊃ B, then E ∈ B,
(2) If B1 ∪B2 ∈ B then B1 ∈ B or B2 ∈ B,
(3) If B ∈ B and ε > 0 then B ∩ (x0 − ε, x0 + ε) ∈ B.
The class of sets which are uncountable in each (x0 − ε, x0 + ε) or have

positive outer measure in each such interval and many other classes of sets
have the previously pointed properties. The articles on this topic are as
follows: J. Jędrzejewski [7], [8], J. Jędrzejewski with W. Wilczyński [13], J.
Jędrzejewski with S. Kowalczyk [10] and [11].

Let us start now from the beginning:

Definition 6. For each x ∈ R let B+
x be a class of non-empty sets fulfilling

the following conditions:
(1) B1 ∪B2 ∈ B+

x ⇐⇒ (B1 ∈ B+
x ∨B2 ∈ B+

x ),
(2) B ∩ (x, x+ t) ∈ B+

x for each B ∈ B+
x and t > 0.

For each x ∈ R let B−x be a class of non-empty sets fulfilling the following
conditions:

(1) B1 ∪B2 ∈ B−x ⇐⇒ (B1 ∈ B−x ∨B2 ∈ B−x ),
(2) B ∩ (x, x+ t) ∈ B−x for each B ∈ B−x and t > 0.
Let Bx = B−x ∪B+

x .

Definition 7. If f defined in some (a, b) is a real function, then a number
(or +∞ or −∞) is called B-limit number of f at x0 from (a, b) if{

x ∈ (a, b) : f−1(Ug)
}
∈ Bx0

for any neighbourhood Ug of the point g.

Definition 8. If {
x ∈ (a, b) : f−1(Ug) ∈ B−x0

}
for any neighbourhood Ug of the point g, then g is called the left B-limit
number of a function f at a point x0.

Similarly we define right B-limit numbers of a function f at a point x0.
• By L+

B(f, x0) we denote the set of all right B-limit numbers of f at
x0.
• By L−B(f, x0) we denote the set of all left B-limit numbers of f at
x0.
• By LB(f, x0) we denote the set of all B-limit numbers of f at x0.

Then, as for usual limit numbers, one can state:
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Theorem 10. For arbitrary real function f on the interval (a, b) and any
x0 from (a, b) the sets LB(f, x0), L−B(f, x0) and L+

B(f, x0) are non-empty,
closed and

LB(f, x0) = L−B(f, x0) ∪ L+
B(f, x0).

Considering the sets of B-limit numbers we are not able to get the ana-
logue of Rome’s Theorem. The situation depends on the class B. But if we
add a special condition for the family B, we can get adequate analogue of
Young’s theorem.

Definition 9. We say that the class B fulfils condition M if
∞⋃
n=1

En ∈ Bx0

for any: x0 ∈ (a, b), sequence (xn)∞n=1 converging to x0 and every sequence
of sets (En)∞n=1 such that En ∈ Bxn.

This condition permits us to state:

Theorem 11. If the class B fulfils condition M , then{
x ∈ (a, b) : L−B(f, x) 6= L+

B(f, x)
}

is at most countable set for any function f : (a, b) −→ R.

3. Asymmetry for Some Classes of Functions

3.1. Differentiation of Functions. Everybody knows:

Theorem 12. The set of all those points at which left derivative of a func-
tion f : R −→ R is different from the right derivative of this function is at
most countable.

3.2. Continuity of Functions. One can get that the set of points at which
a function is continuous from exactly one side as a quite simple corollary of
Young’s Theorem.

Theorem 13. For any function f : R −→ R the set of all points at which
f is continuous from the only one side is at most countable.

3.3. Darboux Condition of Functions. As before: everybody knows
that Darboux condition has been originally defined as a global condition of
a function. It sounds like this: the function f fulfils Darboux condition if
it takes all values in between; exactly:

Definition 10. We say that a function f : (a, b) −→ R fulfils Darboux con-
dition if for any x1 and x2 such that f(x1) 6= f(x2) and any number c lying
between f(x1) and f(x2) there exists a point x lying (strictly) between x1
and x2 such that f(x) = c.
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This condition can be replaced by the one that function f transforms
connected sets onto connected sets.

But still this condition is not good enough to say about asymmetry. We
should define this condition locally, even more it must be defined separately
for both sides. Let’s start to do it, what was done by A. Bruckner and J.
Ceder in 1965. For simplicity, let us assume that all the discussed functions
are bounded.

Definition 11. (A. Bruckner, J. Ceder) [2]) A function f : (a, b) −→ R is
said to be Darboux from the left side at a point x0 ∈ (a, b) if

(1) f(x0) ∈ L−(f, x0),
(2) for each c ∈ (inf L−(f, x0), supL−(f, x0)) and for each t > 0 there

exists a point x ∈ (x0 − t, x0) such that f(x) = c.

Similarly,

Definition 12. We say that a function f : (a, b) −→ R is Darboux from the
right side at a point x0 ∈ (a, b) if

(1) f(x0) ∈ L+(f, x0),
(2) for each c ∈ (inf L+(f, x0), supL+(f, x0)) and for each t > 0 there

is a point x ∈ (x0, x0 + t) such that f(x) = c.

In the end:

Definition 13. We say that a function f : (a, b) −→ R is Darboux at a point
x0 ∈ (a, b) if it is Darboux from both sides at x0.

These definitions would not be good enough if the next theorem is false.
But luckily it is not so.

Theorem 14. A function f : (a, b) −→ R is Darboux if and only if it is
Darboux at each point x0 ∈ (a, b).

And now we can say about Darboux asymmetry.

Theorem 15. [9]. For each function f : (a, b) −→ R the set of all those
points at which f Darboux from exactly one side is at most countable.

3.4. Connectedness of Functions. Next class of functions we want to
discuss is the class of functions with connected graphs. They are called
connected functions, however they can be defined in each topological spaces
we shall consider only real functions defined in an interval. The adequate
characterization has been given by B. D. Garret, D. Nelms and K. R. Kel-
lum [3].

Definition 14. A function f : (a, b) −→ R is called connected if its graph
is a connected set on the plane.
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As before this definition is a global one, we have to find a local definition
which will be as good as to get that local and global characterizations
coincide.

As before, we assume that all discussed functions are bounded.

Definition 15. (B. D. Garret, D. Nelms, K. R. Kellum) [3]) A function
f : (a, b) −→ R is connected from the left side at a point x0 ∈ (a, b) if

(1) f(x0) ∈ L−(f, x0),
(2) for each continuum K (connected and compact set) such that

projx(K) = [x0 − t, x0] for some t > 0

and
projy(K) ⊂

(
inf L−(f, x0), supL−(f, x0)

)
the (graph) function f has common point with K.

Similarly:

Definition 16. A function f : (a, b) −→ R is connected from the right side
at a point x0 ∈ (a, b) if

(1) f(x0) ∈ L+(f, x0),
(2) for each continuum K such that

projx(K) = [x0, x0 + t] for some t > 0

and
projy(K) ⊂

(
inf L+(f, x0), supL+(f, x0)

)
the (graph) function f has common point with K.

Definition 17. We say that a function f : (a, b) −→ R is connected at
a point x0 ∈ (a, b) if it is connected from both sides at x0.

And of course:

Theorem 16. A function f : (a, b) −→ R is connected if and only if it is
connected at each point x0 ∈ (a, b).

Finally, we are able to formulate theorem on connectivity asymmetry.

Theorem 17. For each function f : (a, b) −→ R the set of all those points
at which f is connected from exactly one side is at most countable.

3.5. Almost Continuity of Functions. The last class of functions we
want to discuss is the class of almost continuous functions. The adequate
local characterization has been given by J. M. Jastrzębski, T. Natkaniec
and J. Jędrzejewski [6].
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Definition 18. A function f : (a, b) −→ R is called almost continuous if
each neighbourhood of its graph contains some continuous function defined
in (a, b).

As before this definition is a global one, we have to find a local definition
which will be as good as to get that local and global characterizations
coincide.

We assume that all discussed functions are bounded.

Definition 19. A function f : (a, b) −→ R is almost continuous from the
left side at a point x0 ∈ (a, b) if

(1) f(x0) ∈ L−(f, x0),
(2) there is a positive ε such that for each open neighbourhood of f|(x,∞)

arbitrary y ∈ (inf L−(f, x0), supL−(f, x0)), arbitrary neighbourhood
G of the point (x, y) ∈ R2 and arbitrary t ∈ (x0, x0 + ε) there is a
continuous function g : (x0, x0 + ε) −→ R such that g ⊂ U ∪G and
g(x0) = y, g(t) = f(t).

Similarly one can define almost continuity from the right side at a point
x0 ∈ (a, b).

Definition 20. We say that a function f : (a, b) −→ R is almost continuous
at a point x0 ∈ (a, b) if it is almost continuous from both sides at x0.

And of course:

Theorem 18. A function f : (a, b) −→ R is almost continuous if and only
if it is almost continuous at each point x0 ∈ (a, b).

Finally, one can state:

Theorem 19. For each function f : (a, b) −→ R the set of all those points
at which f is almost continuous from exactly one side is at most countable.

4. General Approach to Asymmetry of Functions

Some general theorems were discussed in previous parts of the article.
Let us come to Thomson’s monograph. B. S. Thomson gathered several
ideas in one theory. He defined local systems which contain B classes and
B∗ classes that have been defined in [7]. For sake of completeness let us
remind the basic notions.

4.1. Local Systems.

Definition 21. B. S. Thomson [17].
By a local system in R we mean a class S consisting of non-empty collections
S(x) for each real number x, fulfilling the following conditions:

(1) {x} /∈ S(x),
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(2) E ∈ S(x) =⇒ x ∈ E,

(3) (E ∈ S(x) ∧ F ⊃ E) =⇒ F ∈ S(x),

(4) (E ∈ S(x) ∧ δ > 0) =⇒ E ∩ (x− δ, x+ δ) ∈ S(x).

Definition 22. By a left local system in R we mean a class S consisting of
non-empty collections S(x) for each real number x, fulfilling the following
conditions:

(5) {x} /∈ S(x),

(6) E ∈ S(x) =⇒ x ∈ E,

(7) (E ∈ S(x) ∧ F ⊃ E) =⇒ F ∈ S(x),

(8) (E ∈ S(x) ∧ δ > 0) =⇒ E ∩ (x− δ, x] ∈ S(x).

Similarly we define right local systems.

A local system is called filtering at a point x if

(9) E ∩ F ∈ S(x) whenever E ∈ S(x) and F ∈ S(x).

A local system is called filtering if it is filtering at each x in R.
A local system is called bilateral if

E ∩ (x− δ, x) 6= ∅ and E ∩ (x, x+ δ) 6= ∅
for each x ∈ R, E ∈ S(x) and δ > 0.

Let us observe that those definitions are very close to Definition 6. When
B. S. Thomson assumes that dual system for S is filtering, then S fulfils all
requirements of Definition 6. The only difference lays in the belonging of
the point x to every set from the class Sx.

Definition 23. A number g is called S-limit of a function f at a point x if

f−1(g − ε, g + ε) ∪ {x} ∈ S(x)

for each positive ε.
We shall write then

g = (S) lim
t→x

f(t).

The set of all (S)-limits are denoted by ΛS(f, x).

For each local system S there is a system S∗ which is also a local system,
that is defined by:

E ∈ S∗(x) ⇐⇒
(
x ∈ E ∧

[
(R \ E) ∪ {x}

]
/∈ S(x)

)
.

This system is called dual system for S.
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A system S is called filtering if E1 ∩ E2 ∈ S(x) for every sets E1 ∈ S(x)
and E2 ∈ S(x) and each x ∈ R.

Definition 24. We say that two systems S1 and S2 satisfy a joint inter-
section condition if for any choices {Ex : x ∈ R} and {Dx : x ∈ R} such
that Ex ∈ S1(x), Dx ∈ S2(x) there exists a gauge δ on R so that if
0 < |x − y| < min{δ(x), δ(y)} then at least one of the sets Ex ∩ Dy or
Dx ∩ Ey contains points other than x and y.

By a gauge on the set R we mean a positive function defined in R.
And now we are able to formulate the asymmetry theorem given by

Thomson.

Theorem 20. Let S1, S2 be local systems such that both of them are filtering
and that the pair (S1,S2) has the joint intersection condition. Then for any
function f : R −→ R the set

{x ∈ R : ΛS1(f, x) 6= ΛS2(f, x)}
is at most countable.

Example 2.

Let S1x be the class consisting of all sets E for which E ∩ (x− ε, x+ ε) is
of the first category.

Let S2x be the class consisting of all sets D for which D ∩ (x − ε, x + ε)
has positive outer measure.

There are two sets A and B such that A ∩ B = ∅, A ∪ B = (0, 1), A is
of the first category in (0, 1), and B has measure 1.

Let f : (0, 1) −→ R be defined as follows:

f(x) =

{
0 if x ∈ A,
1 if x ∈ B.

For this function, all points from (0, 1) are points of
(
S1,S2

)
-asymmetry.

4.2. Świątkowski Approach to Asymmetry.

Definition 25. (T. Świątkowski [15]) Let T be a stronger topology in R than
the natural one. For a subset E of R the symbol E′T denote the set of all
accumulation points with respect to topology T . Let moreover Lx = (−∞, x)
and Px = (x,∞) for any real number x. Consider now the function ϕ in
the following way:

x ∈ ϕ(A) if x ∈ (A ∩ Lx)′T 4 (A ∩ Px)′T

for any subset A of R.
Each point from the set (A ∩ Lx)′T 4 (A ∩ Px)′T is called T -asymmetry

point of the set A.
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Definition 26. Let f : R −→ R be arbitrary function and x a real number.
We say that g is T -limit number of the function f at a point x if

x ∈
(
f−1(U)

)′
T

for each neighbourhood U of the point x.

Not every topology is good enough to get the adequate theorem on asym-
metry; let us call the property (W ) from the article [15].

Definition 27. [15] Let T be a stronger topology then the natural one in
the set R. We say that T fulfils condition (W ) if for every x ∈ R, sequence
(xn)∞n=1 converging to x and every sequence (En)∞n=1 such that xn ∈ (En)′T
the point x belongs to (

⋃∞
n=1En)′T .

This condition (W ) for the topology T described as above is equivalent
to the condition (W ′):
for an arbitrary x ∈ R and its T -neighbourhood U there exists a positive
number δ such that ((x− δ, x+ δ) \ U)′T = ∅.

The condition (W ′) allows to formulate one of the most general theorems
on asymmetry.

Theorem 21. If T is a stronger than the natural topology in the set R and
fulfils condition (W ), then for any function f : R −→ R the set of asymmetry
of f is at most countable.

It is now easy to observe that:

If T is a natural topology in R, Theorem 21 allows us to obtain the
classical Young’s Theorem on asymmetry. It is implied from the fact that
T fulfils condition (W ′) (see Theorem 3).

Let us remark that if T is a Hashimoto topology in R generated by sets of
the first category, Theorem 21 allows us to obtain Theorem on qualitative
asymmetry of functions. It follows from the fact that T also fulfils (W ′)
(see Theorem 6).

4.3. Comments on the Three Approaches to Asymmetry. When
we want to compare the three ideas of B. S. Thomson, of T. Świątkowski
and J. Jędrzejewski, we can observe that some local systems S-limits can
be understood as B-limits, some systems can be understood as systems B.
However, in each theorem where Thomson assumes that the dual system for
a system S is filtering, then the system fulfils all conditions for the system
B. Świątkowski’s condition and mine called W or M are equivalent, so
Thomson’s theorems are almost the same as Świątkowski’s and mine ones.
The only difference lays on different approaches to the problem.
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SOME REMARKS ON STRONG SEQUENCES

JOANNA JURECZKO

Abstract

Strong sequences were introduced by Efimov in the 60s’ of the last century as a useful
method for proving well known theorems on dyadic spaces i.e. continuous images of the
Cantor cube. The aim of this paper is to show relations between the cardinal invariant
associated with strong sequences and well known invariants of the continuum.

1. Introduction

Strong sequences were introduced by B. A. Efimov in [4], as a useful
tool for proving well known theorems on dyadic spaces. Among others he
proved that strong sequences do not exist in the subbase of the Cantor
cube. This is our opinion that it could be interesting the answer of the
natural question about properties of spaces in which strong sequences exist
and consequences of such existence. This is how the interest of the strong
sequences method was born, (for further historical notes concerning strong
sequences see [6]). Particularly, strong sequences method, as was shown in
e.g. [7, 8] is equivalent to partition theorems. Moreover, if we associate the
cardinal invariant with the length of strong sequences in spaces where such
sequences exist, we can obtain interesting results, (see also [8, 9]). This is
our hope that this invariant can be usefull characterisation of such spaces.

In this paper we will consider the space (ωω,≤∗) in which, as we will
show, strong sequences exist. We will investigate inequalities between in-
variant ŝ associated with strong sequences and other well known invariants
like: boundeness, covering number and the invariant associated with MAD
families.

Our paper is organized as follows. In section 2 we gather all definitions
and previous facts needed for further parts of this paper. In Section 3
we show main results. The paper is finished by some results in forcing,

• Joanna Jureczko — e-mail: joanna.jureczko@pwr.edu.pl
Wrocław University of Science and Technology.
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(Section 4) in which we will show some strong inequalities which can be
obtained between ŝ and considered invariants. In this part we give some
open problems.

2. Definitions and previous results

1. Consider a partially preordered set (X,�), i.e. a set ordered by reflex-
ive and transitive relation �. Let a, b, c, x ∈ X. We say that a and b are
comparable iff a � b or b � a. We say that a and b are compatible iff there
exists c ∈ X such that a � c and b � c. (In this case we say that a, b have
a bound). A set A ⊂ X is called an ω-directed set iff every subset of A of
cardinality less than ω has a bound which belongs to A.

Definition 1. A sequence (Sφ, Hφ)φ<α, where Sφ, Hφ ⊂ X, and |Sφ| < ω

is called a strong sequence if:
1o Sφ ∪Hφ is ω-directed for all φ < α;
2o Sψ ∪Hφ is not ω-directed, for all ψ and φ such that φ < ψ < α.

In [6] the strong sequence number ŝ (X) was introduced as follows:

(1) ŝ (X) = sup {κ : there exists a strong sequence on X of length κ} .
2. We say that (X,�) iff � is reflexive and transitive.

A subset B ⊂ X is called bounded iff B has a bound. The set which is not
bounded will be called unbounded.
A subset A ⊆ B ⊆ X is called cofinal in B iff for any b ∈ B there exists
a ∈ A such that b � a. A cofinal subset in the whole set X is called also a
dominating set. The following invariants are well known:

(2) b (X) = min {|A| : A ⊂ X ∧A is unbounded in X} ,

(3) d (X) = min {|A| : A ⊂ X ∧A is cofinal in X} .

Fact 1 ([3]). Let (X,�) be a partially preordered set without maximal
elements. Then b (X) is regular and

(4) b (X) ≤ cf (d (X)) ≤ d (X) .

3. We will provide our considerations for (X,�) = (ωω,≤∗), i.e. in the
set of all functions ω → ω ordered by

(5) f ≤∗ g iff | {n ∈ ω : g (n) < f (n)} | < ω.

We accept the notation: ŝ = ŝ (ωω) , b = b (ωω) , d = d (ωω).

4. A family I of subsets of X which satisfies the following three condi-
tions
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1) A ∈ I and B ⊂ A then B ∈ I;
2) {x} ∈ I for all x ∈ I;
3) X 6∈ I
is called a family of thin sets.
A subfamily B ⊂ I is called a base of the family I of thin sets iff for each
set A ∈ I there exists a set B ∈ B such that A ⊆ B.

We remind definitions of the following invariants, (see e. g. [3] p.250):

(6) add (I) = min
{
|A| : A ⊂ I ∧

⋃
A 6∈ I

}
(7) cov (I) = min

{
|A| : A ⊂ I ∧

⋃
A = X

}
(8) non (I) = min {|A| : A 6∈ I ∧A ∈ P (X)}

(9) cof (I) = min {|A| : A ⊂ I ∧ A is a base of I} .
Notice that any ideal on X is a family of thin sets. (Clearly, I is an ideal

iff add (I) ≥ ℵ0).

The following diagram is known in the literature as "Cichoń diagram"
and was introduced by Fremlin in [5]. Since that paper the diagram has
been completed and modified by many authors. Below we remind this dia-
gram for four invariants defined above.

Fact 2 ([1]). If I is a family of thin sets, then

ℵ0 - add(I)

cov(I)

non(I)

cof(I) 2ℵ0-�
�
�
��

@
@
@
@R

@
@
@
@R

�
�
�
��

where α→ β denotes α ≤ β.

5. Let R be the real line with standard topology. Let µ be the Lebesque
measure on R. Then
(10) M = {A ⊂ R : A is meager},

(11) N = {A ⊂ R : µ (A) = ∅} .
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Notice, thatM and N are both ideals.
6. In [1] one can find the following results:

Fact 3 (Bartoszyński) cov (M) is the cardinality of the smallest fam-
ily F ⊆ ωω such that

(12) ∀g∈ωω∃f∈F | {n ∈ ω : f (n) 6= g (n)} | < ω.

Fact 4 (Keremedis) non (M) is the cardinality of the smallest family
F ⊆ ωω such that

(13) ∀g∈ωω∃f∈F | {n ∈ ω : f (n) = g (n)} | < ω.

Fact 5 (Rothberger)

(14) cov (M) ≤ non (N ) and cov (N ) ≤ non (M) .

Fact 6 (Bartoszyński, Raisonnier and Stern)

(15) add (N ) ≤ add (M) ,

(16) cof (M) ≤ cof(N ).

Fact 7 (Miller, Truss)

(17) add (M) = min {cov (M) , b} .

Fact 8 (Fremlin)

(18) cof (M) = max {non (M) , d} .

According to equalities (14) - (18) the following diagram holds:

Fact 9 ([1]).

cov(N ) non(M) cof(M) cof(N )

add(N ) add(M) cov(M) non(N )

b d

- -

6

6

6

6

6

-

-- -

6

-

where α→ β denotes α ≤ β.
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Observation 1. (i) Let F ⊆ ωω be the smallest family of the property

∀g∈ωω∃f∈F | {n ∈ ω : f (n) = g (n)} | < ω.

Then | {n ∈ ω : fα (n) 6= fβ (n)} | = ω for all fα, fβ ∈ F , α 6= β.
(ii) Let F ⊆ ωω be the smallest family of the property

∀g∈ωω∃f∈F | {n ∈ ω : f (n) 6= g (n)} | < ω.

Then | {n ∈ ω : fα(n) 6= fβ(n)} | = ω for all fα, fβ ∈ F , α = β.

Proof. We prove (i) only, (ii) can be proved similarly but using Fact 3.
(i) By Fact 4 we have |F| = non (M). Suppose in contrary that there are
α 6= β such that | {n ∈ ω : fα (n) = fβ (n)} | = ω. Let

A (α, β) = {n ∈ ω : fα (n) = fβ (n)} .

Let {gγ ∈ ωω \ F : γ < η} be a family such that

| {n ∈ ω : gγ (n) = fβ (n)} | < ω

for all γ < η. Let B(γ, β) = {n ∈ ω : gγ (n) = fβ (n)} for all γ < η.
Obviously |A (α, β) ∩ B (γ, β) | < ω. Then gγ (n) = fα (n) for all n ∈
A (α, β) ∩B (γ, β). A contradiction with the minimality of F . �

7. Two functions f, g ∈ ωω are almost disjoint iff there are finite values
of α ∈ Dom (f) ∩ Dom (g) such that f (α) = g (α). When the functions
have domain ω almost disjointness means that they are eventually different
(f (α) 6= g (α)) for all sufficiently large α < ω. A maximal almost disjoint
(MAD) family of functions on ω is an almost disjoint family of functions
ω → ω that is not properly included in another such family. In [2] the
following invariant is associated with MAD families of functions:

(19) ae = min {A ⊆ P (ωω) : A is a MAD family} .

Fact 10 ([2]).

(20) ae ≥ ω+.

Observation 2.

(21) non (M) ≤ ae.

Proof. Immediately by Fact 4. �
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3. Main results

Theorem 1.

(22) b ≤ ŝ.

Proof. Suppose that ŝ < b and κ ≤ ŝ. Let {(Sα, Hα) : α < κ} be a maximal
strong sequence in ωω. For any α < κ define

Aα = {f ∈ Sα \Hβ : {f} ∪Hβ is not ω-directed for β < α} .
Define an increasing function

F : κ→
⋃
α<κ

(Sα ∪Hα) .

such that
F (α) =

{
fα ∈ Hα for α = 0;
fα ∈ Aα for α > 0.

Since ωω has no maximal elements, this function is well-defined.
Let

A = {fα ∈ Aα : fα = F (α) , α < κ} .
Since κ < b, there exists g ∈ A such that fα ≤ g, for all fα ∈ Sα. As ωω has
no maximal elements, there exists h ∈ ωω\

⋃
α<κ (Sα ∪Hα) such that g < h.

Thus there exists a maximal ω-directed set S ⊂ ωω \
⋃
α<κ (Sα ∪Hα) such

that h ∈ S and S ∪ Hα is not ω-directed for any α < κ. A contradiction
with maximality of the strong sequence {(Sα, Hα) : α < κ}. �

Theorem 2.

(23) cov (M) ≤ ŝ.

Proof. Let cov (M) = κ. By Fact 3 there exists the smallest family

F = {fα ∈ ωω : α < κ}
fulfilling (12)

Thus we can construct a function H : ωω → κ such that

H (g) = min {α : | {n ∈ ω : fα (n) = g (n)} | = ω} .
The family F is well-ordered hence the function H is well-defined.
We will construct a strong sequence in ωω with relation defined as follows:

if fα ∈ F , then fα � g iff h (g) = α;

if f 6∈ F , then f � g iff | {n ∈ ω : f (n) = g (n)} | = ω.

Let g0 ∈ ωω be an arbitrary function. Then there exists f ∈ F such
that | {n ∈ ω : f (n) = g0 (n)} | = ω. Let fα0 ∈ F be a function such that
h (g0) = α0. Let S0 = {g0} and H0 = {g ∈ ωω : h (g) = α0} . Obviously
H0 is non-empty. Let (S0,H0) be the first element of a strong sequence.
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Since H0 6= ωω there exists g1 ∈ ωω \ H0 such that h (g1) 6= α0. Hence
we can construct the next element of the strong sequence. Let fα1 ∈ F be
a fucntion such that | {n ∈ ω : g1 (n) = fα1 (n)} | = ω. Let S1 = {g1} and
H1 = {g ∈ ωω \ H0 : h (g) = α1} .

Assume that the strong sequence {(Sγ ,Hγ) : γ < β} such that

(Sγ ,Hγ) =
(
{gγ} ,

{
g ∈ ωω \

⋃
{Hδ : δ < γ} : h (g) = αγ

})
,

where gγ ∈ ωω \
⋃
δ<γ Hδ, has been defined,.

Since β < κ and by Observation 1, there exists gβ ∈ ωω \
{
fαγ : γ < β

}
be a function such that |

{
n ∈ ω : gβ (n) = fαβ (n)

}
| = ω. Let

(Sβ,Hβ) =
(
{gβ} ,

{
g ∈ ωω \

⋃
{Hγ : γ < β

}
: h (g) = αβ}

)
.

Thus the strong sequence of length |F| has been constructed. �

Theorem 3.

(24) ae ≤ ŝ.

Proof. By Fact 8 we have ae ≥ ω+. Let Fe be a MAD family of functions
ω → ω of cardinality ω+. We will construct a strong sequence of cardinality
ω+ in ωω with the following relatio:

f � g iff | {α ∈ ω : f (α) = g (α)} | = ω.

Let f0 ∈ Fe be a function. Let (S0,H0) = ({f0} , {g ∈ ωω : f0 � g}) be the
first element of a strong sequence. Obviously (S0,H0) is non-empty because
f0 ∈ H0. Let f1 ∈ Fe \ H0. Let (S1,H1) = ({f1} , {g ∈ ωω : f1 � g}) . By
our construction H0 ∪ H1 is not ω-directed. Let (S1,H1) be the second
element of the strong sequence.

Assume that the strong sequence {(Sγ ,Hγ) : γ < β < ω+} such that

(Sγ ,Hγ) =
(
{fγ} ,

{
g ∈ ωω \

⋃
{Hδ : δ < γ : fγ � g

})
,

where fγ ∈ Fe \
⋃
{Hδ : δ < γ}, has been defined.

Since β < ω+ there exists fβ ∈ Fe \
⋃
{Hγ : γ < β}. Let

(Sβ,Hβ) =
(
{fβ} ,

{
g ∈ ωω \

⋃
{Hδ : γ < β : fβ � g

})
,

Thus the strong sequence of length |F| has been constructed. �

Corollary 1.

(25) non (M) ≤ ae ≤ ŝ.

Proof. Immediately by Fact 10 and Theorem 3. �

Theorem 4. In (ωω,≤∗) there exists a strong sequence of length 2ℵ0 .
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Proof. Fix a MAD family of sets A =
{
Aα ⊆ [ω]ω : α < 2ℵ0

}
, (i.e. a family

of infinite subsets of ω such that |A ∩ B| < ω for any A,B ∈ A). For each
A ∈ A consider functions: FAn ∈ ωω such that

FAn (a) =

{
n+ 1 for a ∈ A
0 for a 6∈ A

and FAω ∈ ωω such that

FAω (a) =

{
a for a ∈ A
0 for a 6∈ A.

Obviously
FA0 <∗ FA1 <∗ ... <∗ FAω .

Now take (SA, HA) =
(
{FAω },

{
FAn : n < ω

})
. Then SA ∪HA is ω-directed,

because FAω is its bound. Now take Aα, Aβ ∈ A such that α < β. Then
SAβ ∪HAα is not ω-directed, because it contains no bound for HAα . Since
all MAD families have cardinality 2ℵ0 we obtain that {(SA, HA) : A ∈ A}
is the required strong sequence. �

Corollary 2. The following diagram holds

non(M) cof(M)

add(M) cov(M)

b d

ŝ
ae

2ℵ0

ℵ0

-

6

6

6

6

-

- -

-

@
@
@

@@I

XXXXz XXXXz ���
���

���
���:

where α→ β means α ≤ β:

Proof. Immediately by equalities (4), (17), (18) and Theorems 1-4. �

4. Some results for forcing notion

According to [1] pp. 380-397, the following inequalities are consistent
with ZFC.

In the iterated Cohen’s model with finite supports non (M) = ℵ1 ∧
cov (M) = c which is connecting with Cichoń diagram we have add (N ) =
add (M) = cov (M) = non (M) = b = ℵ1 and cov (M) = r = cof (M) =
cof (N ) = non (N ) = c > ℵ1. Thus
(26) add (N ) = add (M) = cov (N ) = cov (M) = b < ŝ.



By adding ℵ2 random reals a model of CH we have non (N ) = ℵ1 <
cov (N ) = ℵ2 = c. Thus

(27) non (N ) < ŝ.

By adding ℵ2 Hechler’s reals (with finite support) to a model of CH we
get cov (N ) = ℵ1 < add (M) = ℵ2 = c. Hence it is consistent that

(28) cov (N ) < ŝ.

Alternatively adding ℵ2 Cohen and Laver reals (with countable support)
over a model of CH we have cov (N ) = ℵ1 < add (M) = ℵ2 = c Thus

(29) cov (N ) < ŝ.

Alternatively iterating ℵ2 times rational perfect forcing and Roslanowski-
Shelah forcing over a model of CH we obtain ℵ1 = non (M) < non (N ) =
d = ℵ2. Therefore, it is consistent that
(30) cov (M) < ŝ.

Finally in the iterated Sachs model we have that cof (N ) = ℵ1. Hence, it
is consistent with ZFC that

(31) cof (N ) < ŝ.

Open problem. Is there any relation between
a) ŝ and cof (M)?
b) ŝ and non (N )?
c) ŝ and cof (N )?
d) ŝ and d?
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ON F (p, n)-FIBONACCI BICOMPLEX NUMBERS

MIROSŁAW LIANA, ANETTA SZYNAL-LIANA, AND IWONA WŁOCH

Abstract

In this paper we introduce F (p, n)-Fibonacci bicomplex numbers and L(p, n)-Lucas
bicomplex numbers as a special type of bicomplex numbers. We give some their properties
and describe relations between them.

1. Introduction

Let consider the set C of complex numbers a + bi, where a, b ∈ R, with
the imaginary unit i. Let B be the set of bicomplex numbers w of the form

(1) w = z1 + z2j,

where z1, z2 ∈ C. Then i and j are commuting imaginary units, i.e.

(2) ij = ji, i2 = j2 = −1.
Let w1 = (a1 + b1i) + (c1 + d1i)j and w2 = (a2 + b2i) + (c2 + d2i)j

be arbitrary two bicomplex numbers. Then the equality, the addition, the
substraction, the multiplication and the multiplication by scalar are defined
in the following way.
Equality: w1 = w2 only if a1 = a2, b1 = b2, c1 = c2, d1 = d2,
addition: w1 + w2 = ((a1 + a2) + (b1 + b2)i) + ((c1 + c2) + (d1 + d2)i)j,
substraction: w1 −w2 = ((a1 − a2) + (b1 − b2)i) + ((c1 − c2) + (d1 − d2)i)j,
multiplication by scalar s ∈ R: sw1 = (sa1 + sb1i) + (sc1 + sd1i)j,
multiplication:
w1 · w2 = ((a1a2 − b1b2 − c1c2 + d1d2) + (a1b2 + a2b1 − c1d2 − c2d1)i) +
+ ((a1c2 + a2c1 − b1d2 − b2d1) + (a1d2 + a2d1 + b1c2 + b2c1)i) j.
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The bicomplex numbers were introduced in 1892 by Segre, see [5]. The
theory of bicomplex numbers is developed, many of papers concerning this
topic are published quite recently, see for example [2], [3], [4].

The Fibonacci numbers Fn are defined by the recurrence relation Fn =
Fn−1 + Fn−2, for n ≥ 2 with F0 = F1 = 1. The nth Lucas number Ln is
defined recursively by Ln = Ln−1 + Ln−2 for n ≥ 2 with the initial terms
L0 = 2, L1 = 1.

In this paper we recall some generalizations of Fibonacci numbers and
Lucas numbers and we introduce the bicomplex numbers related with these
generalizations.

2. The F (p, n)-Fibonacci numbers

The Fibonacci sequence has been generalized in many ways but a very
natural is firstly to use one-parameter generalization of the Fibonacci se-
quence. A generalization uses one parameter p, p ≥ 2 was introduced
and studied by Kwaśnik and I. Włoch in the context of the number of
p-independent sets in graphs, see [1]. We recall this definition.

Let p ≥ 2 be integer. Then

(3) F (p, n) = n+ 1, for n = 0, 1, . . . , p− 1,
F (p, n) = F (p, n− 1) + F (p, n− p), for n ≥ p,

is the F (p, n)-Fibonacci number.
Moreover L(p, n)-Lucas number is a cyclic version of F (p, n) defined in

the following way

(4) L(p, n) = n+ 1, for n = 0, 1, . . . , 2p− 1,
L(p, n) = L(p, n− 1) + L(p, n− p), for n ≥ 2p,

where p ≥ 2, n ≥ 0.
Note that for n ≥ 0 we have that F (2, n) = Fn+1 and for n ≥ 2 L(2, n) =
Ln.

The following Tables present the initial words of the generalized Fibonacci
numbers and the generalized Lucas numbers for special case of n and p.

n 0 1 2 3 4 5 6 7 8 9 10
Fn 1 1 2 3 5 8 13 21 34 55 89

F (2, n) 1 2 3 5 8 13 21 34 55 89 144
F (3, n) 1 2 3 4 6 9 13 19 28 41 60
F (4, n) 1 2 3 4 5 7 10 14 19 26 36
F (5, n) 1 2 3 4 5 6 8 11 15 20 26

Table 1. The values of F (p, n) and Fn.
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n 0 1 2 3 4 5 6 7 8 9 10
Ln 2 1 3 4 7 11 18 29 47 76 123

L(2, n) 1 2 3 4 7 11 18 29 47 76 123
L(3, n) 1 2 3 4 5 6 10 15 21 31 46
L(4, n) 1 2 3 4 5 6 7 8 13 19 26

Table 2. The values of L(p, n) and Ln.

Generalized Fibonacci numbers F (p, n) and generalized Lucas numbers
L(p, n) have been studied recently, mainly with respect to their graph and
combinatorial properties, see for example [7], [8], [9], [10]. Among other
some identities for F (p, n) and L(p, n) were given. We recall some of them.

Theorem 1 ([8]). Let p ≥ 2 be integer. Then for n ≥ p+ 1

(5)
n−p∑
l=0

F (p, l) = F (p, n)− p.

Theorem 2 ([8]). Let p ≥ 2, n ≥ p be integers. Then

(6)
n∑

l=1

F (p, lp− 1) + 1 = F (p, np).

Theorem 3 ([6]). Let p ≥ 2, n ≥ p be integers. Then

(7)
n∑

l=1

F (p, lp) = F (p, np+ 1)− F (p, 1),

(8)
n∑

l=1

F (p, lp+ 1) = F (p, np+ 2)− F (p, 2),

(9)
n∑

l=1

F (p, lp+ 2) = F (p, np+ 3)− F (p, 3).

Theorem 4 ([8]). Let p ≥ 2, n ≥ 2p− 2 be integers. Then

(10) F (p, n) =

p−1∑
l=0

F (p, n− (p− 1)− l).

Theorem 5 ([8]). Let p ≥ 2, n ≥ 2p be integers. Then

(11)
n∑

l=2

L(p, pl) = L(p, np+ 1)− (p+ 2).



38 M. LIANA, A. SZYNAL-LIANA, AND I. WŁOCH

Theorem 6 ([6]). Let p ≥ 2, n ≥ 2p be integers. Then

(12)
n∑

l=2

L(p, pl + 1) = L(p, np+ 2)− L(p, p+ 2).

(13)
n∑

l=2

L(p, pl + 2) = L(p, np+ 3)− L(p, p+ 3).

(14)
n∑

l=2

L(p, pl + 3) = L(p, np+ 4)− L(p, p+ 4).

Theorem 7 ([8]). Let p ≥ 2, n ≥ 2p be integers. Then

(15) L(p, n) = pF (p, n− (2p− 1)) + F (p, n− p).

3. The F (p, n)-Fibonacci bicomplex numbers

Let n ≥ 0 be an integer. The nth F (p, n)-Fibonacci bicomplex number
BF p

n and the nth L(p, n)-Lucas bicomplex number BLp
n are defined as

(16) BF p
n = (F (p, n) + F (p, n+ 1)i) + (F (p, n+ 2) + F (p, n+ 3)i)j,

(17) BLp
n = (L(p, n) + L(p, n+ 1)i) + (L(p, n+ 2) + L(p, n+ 3)i)j,

respectively.
Using the above definitions we can write selected F (p, n)-Fibonacci bi-

complex numbers, i.e.
BF 3

0 = (1 + 2i) + (3 + 4i)j,
BF 3

1 = (2 + 3i) + (4 + 6i)j,
BF 3

2 = (3 + 4i) + (6 + 9i)j,
. . .
BF 4

0 = (1 + 2i) + (3 + 4i)j,
BF 4

1 = (2 + 3i) + (4 + 5i)j,
BF 4

2 = (3 + 4i) + (5 + 7i)j,
. . .
BF 5

0 = (1 + 2i) + (3 + 4i)j,
BF 5

1 = (2 + 3i) + (4 + 5i)j,
BF 5

2 = (3 + 4i) + (5 + 6i)j,
. . .

In the same way one can easily write selected L(p, n)-Lucas bicomplex
numbers.

The addition, the subtraction and the multiplication of F (p, n)-Fibonacci
bicomplex numbers and L(p, n)-Lucas bicomplex numbers are defined in the
same way as for bicomplex numbers.
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In the set C, the complex conjugate of x+yi is x+ yi = x−yi. In the set
B, for a bicomplex number w = (a+ bi) + (c+ di)j, there are three distinct
conjugations.
Let BF p

n be the nth F (p, n)-Fibonacci bicomplex number, i.e.
BF p

n = (F (p, n) + F (p, n+ 1)i) + (F (p, n+ 2) + F (p, n+ 3)i)j,
The bicomplex conjugation of BF p

n with respect to i has the form

BF p
n
i
= (F (p, n) + F (p, n+ 1)i) + (F (p, n+ 2) + F (p, n+ 3)i)j =
= (F (p, n)− F (p, n+ 1)i) + (F (p, n+ 2)− F (p, n+ 3)i)j.

The bicomplex conjugation of BF p
n with respect to j has the form

BF p
n
j
= (F (p, n) + F (p, n+ 1)i)− (F (p, n+ 2) + F (p, n+ 3)i)j =
= (F (p, n) + F (p, n+ 1)i) + (−F (p, n+ 2)− F (p, n+ 3)i)j.

The third kind of conjugation is a composition of the above two conjuga-
tions. Putting k := ji = ij we can define the bicomplex conjugation of BF p

n

with respect to k as follows

BF p
n
k
= (F (p, n) + F (p, n+ 1)i)− (F (p, n+ 2) + F (p, n+ 3)i)j =
= (F (p, n)− F (p, n+ 1)i) + (−F (p, n+ 2) + F (p, n+ 3)i)j.

Using the bicomplex conjugation of BF p
n with respect to i, j, k respec-

tively and (16) we can write

BF p
n ·BF p

n
i
=

=
(
|F (p, n) + F (p, n+ 1)i|2 − |F (p, n+ 2) + F (p, n+ 3)i|2

)
+

+2<
(
(F (p, n) + F (p, n+ 1)i) · (F (p, n+ 2) + F (p, n+ 3)i)

)
j =

= (F (p, n))2 + (F (p, n+ 1))2 − (F (p, n+ 2))2 − (F (p, n+ 3))2+
+2 (F (p, n)F (p, n+ 2) + F (p, n+ 1)F (p, n+ 3)) j.

BF p
n ·BF p

n
j
=

= (F (p, n) + F (p, n+ 1)i)2 + (F (p, n+ 2) + F (p, n+ 3)i)2 =
= (F (p, n))2 − (F (p, n+ 1))2 + (F (p, n+ 2))2 − (F (p, n+ 3))2+
+2 (F (p, n)F (p, n+ 1) + F (p, n+ 2)F (p, n+ 3)) i.

BF p
n ·BF p

n
k
=

=
(
|F (p, n) + F (p, n+ 1)i|2 + |F (p, n+ 2) + F (p, n+ 3)i|2

)
+

−2=
(
(F (p, n) + F (p, n+ 1)i) · (F (p, n+ 2) + F (p, n+ 3)i)

)
k =

= (F (p, n))2 + (F (p, n+ 1))2 + (F (p, n+ 2))2 + (F (p, n+ 3))2+
−2 (F (p, n+ 1)F (p, n+ 2)− F (p, n)F (p, n+ 3)) k.

In the set C, the modulus of x + yi is |x + yi| =
√

(x+ yi) · (x+ yi) =√
x2 + y2. In the set B there are four different moduli, named: real modulus
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|BF p
n |, i−modulus |BF p

n |i, j−modulus |BF p
n |j and k−modulus |BF p

n |k. We
give the formulae of the squares of these modules:
|BF p

n |2 = |F (p, n) + F (p, n+ 1)i|2 + |F (p, n+ 2) + F (p, n+ 3)i|2 =
= (F (p, n))2 + (F (p, n+ 1))2 + (F (p, n+ 2))2 + (F (p, n+ 3)2,

|BF p
n |2i = BF p

n ·BF p
n
i
,

|BF p
n |2j = BF p

n ·BF p
n
j
,

|BF p
n |2k = BF p

n ·BF p
n
k
.

The different conjugations and squares of modules for L(p, n)-Lucas bi-
complex number BLp

n are presented as follows

BLp
n
i
= (L(p, n)− L(p, n+ 1)i) + (L(p, n+ 2)− L(p, n+ 3)i)j,

BLp
n
j
= (L(p, n) + L(p, n+ 1)i) + (−L(p, n+ 2)− L(p, n+ 3)i)j,

BLp
n
k
= (L(p, n)− L(p, n+ 1)i) + (−L(p, n+ 2) + L(p, n+ 3)i)j.

|BLp
n|2 = (L(p, n))2 + (L(p, n+ 1))2 + (L(p, n+ 2))2 + (L(p, n+ 3)2,

|BLp
n|2i = (L(p, n))2 + (L(p, n+ 1))2 − (L(p, n+ 2))2 − (L(p, n+ 3))2+

+2 (L(p, n)L(p, n+ 2) + L(p, n+ 1)L(p, n+ 3)) j.

|BLp
n|2j = (L(p, n))2 − (L(p, n+ 1))2 + (L(p, n+ 2))2 − (L(p, n+ 3))2+

+2 (L(p, n)L(p, n+ 1) + L(p, n+ 2)L(p, n+ 3)) i.

|BLp
n|2k = (L(p, n))2 + (L(p, n+ 1))2 + (L(p, n+ 2))2 + (L(p, n+ 3))2+

−2 (L(p, n+ 1)L(p, n+ 2)− L(p, n)L(p, n+ 3)) k.

4. Properties of F (p, n)-Fibonacci bicomplex numbers

We will give some properties of F (p, n)-Fibonacci bicomplex numbers
and L(p, n)-Lucas bicomplex numbers.

Theorem 8. Let p ≥ 2 be integer. Then for n ≥ p+ 1
(18)

n−p∑
l=0

BF p
l = BF p

n − [p+ (p+ F (p, 0))i+

+ ((p+ F (p, 0) + F (p, 1)) + (p+ F (p, 0) + F (p, 1) + F (p, 2))i) j] .
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Proof. Using (5) and (16) we have
n−p∑
l=0

BF p
l = BF p

0 +BF p
1 + . . .+BF p

n−p =

= (F (p, 0) + F (p, 1)i) + (F (p, 2) + F (p, 3)i)j+
+(F (p, 1) + F (p, 2)i) + (F (p, 3) + F (p, 4)i)j + . . .+
+(F (p, n− p) + F (p, n− p+ 1)i)+
+(F (p, n− p+ 2) + F (p, n− p+ 3)i)j =
= F (p, 0) + F (p, 1) + . . .+ F (p, n− p)+
+ (F (p, 1) + . . .+ F (p, n− p+ 1) + F (p, 0)− F (p, 0)) i+
+ [F (p, 2) + . . .+ F (p, n− p+ 2) + F (p, 0) + F (p, 1)− F (p, 0)+
−F (p, 1) + (F (p, 3) + . . .+ F (p, n− p+ 3) + F (p, 0) + F (p, 1)+
+F (p, 2)− F (p, 0)− F (p, 1)− F (p, 2)) i] j =
= (F (p, n)− p+ (F (p, n+ 1)− p− F (p, 0))i)+
+ [(F (p, n+ 2)− p− F (p, 0)− F (p, 1))+
+ (F (p, n+ 3)− p− F (p, 0)− F (p, 1)− F (p, 2)) i] j =
= BF p

n − (p+ (p+ F (p, 0)) i)− [(p+ F (p, 0) + F (p, 1))+
+ (p+ F (p, 0) + F (p, 1) + F (p, 2)) i] j,
which ends the proof. �

Theorem 9. Let p ≥ 2, n ≥ p be integers. Then

(19)
n∑

l=1

BF p
lp−1 = BF p

np − [(F (p, 0) + F (p, 1)i) + (F (p, 2) + F (p, 3)i) j] .

Proof. Using (16) we have
n∑

l=1

BF p
lp−1 = BF p

p−1 +BF p
2p−1 + . . .+BF p

np−1 =

= (F (p, p− 1) + F (p, p)i) + (F (p, p+ 1) + F (p, p+ 2)i)j+
+(F (p, 2p− 1) + F (p, 2p)i) + (F (p, 2p+ 1) + F (p, 2p+ 2)i)j + . . .+
+(F (p, np− 1) + F (p, np)i) + (F (p, np+ 1) + F (p, np+ 2)i)j =
= F (p, p− 1) + F (p, 2p− 1) + . . .+ F (p, np− 1)+
+ (F (p, p) + F (p, 2p) + . . .+ F (p, np)) i+
+ [(F (p, p+ 1) + F (p, 2p+ 1) + . . .+ F (p, np+ 1)) +
+ (F (p, p+ 2) + F (p, 2p+ 2) + . . .+ F (p, np+ 2)) i] j.

Writing (6) as
n∑

l=1

F (p, lp−1) = F (p, np)−1 = F (p, np)−F (p, 0) and using

(7)–(9) we obtain (19). �

Theorem 10. Let p ≥ 2, n ≥ 2p− 2 be integers. Then

(20) BF p
n =

p−1∑
l=0

BF p
n−(p−1)−l.
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Proof. Using (10) and (16) we have
p−1∑
l=0

BF p
n−(p−1)−l = BF p

n−(p−1) +BF p
n−(p−1)−1 + . . .+BF p

n−(p−1)−(p−1) =

= (F (p, n− (p− 1)) + F (p, n− (p− 1) + 1)i)+
+ [F (p, n− (p− 1) + 2) + F (p, n− (p− 1) + 3)i] j+
+(F (p, n− (p− 1)− 1) + F (p, n− (p− 1))i)+
+ [F (p, n− (p− 1) + 1) + F (p, n− (p− 1) + 2)i] j + . . .+
+(F (p, n− (p− 1)− (p− 1)) + F (p, n− (p− 1)− (p− 1) + 1)i)+
+ [F (p, n− (p− 1)− (p− 1) + 2) + F (p, n− (p− 1)− (p− 1) + 3)i] j =
= (F (p, n) + F (p, n+ 1)i) + (F (p, n+ 2) + F (p, n+ 3)i)j = BF p

n ,

which ends the proof. �

Theorem 11. Let p ≥ 2, n ≥ 2p be integers. Then

(21)
n∑

l=2

BLp
pl = BLp

np+1 −BLp
p+1.

Proof. Using (17) we have
n∑

l=2

BLp
pl = BLp

2p +BLp
3l + . . .+BLp

nl =

= (L(p, 2p) + L(p, 2p+ 1)i) + (L(p, 2p+ 2) + L(p, 2p+ 3)i)j+
+(L(p, 3p) + L(p, 3p+ 1)i) + (L(p, 3p+ 2) + L(p, 3p+ 3)i)j + . . .+
+(L(p, np) + L(p, np+ 1)i) + (L(p, np+ 2) + L(p, np+ 3)i)j+
= L(p, 2p) + L(p, 3p) + . . .+ L(p, np)+
+ (L(p, 2p+ 1) + L(p, 3p+ 1) + . . .+ L(p, np+ 1)) i+
+ [(L(p, 2p+ 2) + L(p, 3p+ 2) + . . .+ L(p, np+ 2)) +
+ (L(p, 2p+ 3) + L(p, 3p+ 3) + . . .+ L(p, np+ 3)) i] j.

Writing (11) as
n∑

l=2

L(p, pl) = L(p, np+1)−L(p, p+1) and using (12)–(14)

we obtain (21). �

Theorem 12. Let p ≥ 2, n ≥ 2p be integers. Then

(22) BLp
n = p ·BF p

n−(2p−1) +BF p
n−p.

Proof. Using (16) we have

BF p
n−(2p−1) = (F (p, n− (2p− 1)) + F (p, n− (2p− 1) + 1)i)+

+(F (p, n− (2p− 1) + 2) + F (p, n− (2p− 1) + 3)i)j

and
BF p

n−p = (F (p, n− p) + F (p, n− p+ 1)i)+
+(F (p, n− p+ 2) + F (p, n− p+ 3)i)j,
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consequently

p ·BF p
n−(2p−1) +BF p

n−p =

= p · F (p, n− (2p− 1)) + F (p, n− p)+
+ (p · F (p, (n+ 1)− (2p− 1)) + F (p, (n+ 1)− p)) i+
+ [(p · F (p, (n+ 2)− (2p− 1)) + F (p, (n+ 2)− p)) +
+ (p · F (p, (n+ 3)− (2p− 1)) + F (p, (n+ 3)− p)) i] j

Using (15) we have

p ·BF p
n−(2p−1) +BF p

n−p =

= (L(p, n) + L(p, n+ 1)i) + (L(p, n+ 2) + L(p, n+ 3)i)j,

which ends the proof. �

For integers p, n, l, p ≥ 2, n ≥ 2, 0 ≤ l ≤ n we have (see [9]) the direct
formula for F (p, n)-Fibonacci number

F (p, n) =
∑
l≥0

f(p, n, l),

where

f(p, n, l) =

(
n− (p− 1)(l − 1)

l

)
.

Using this direct formula other forms of given earlier identities can be
given.
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SANGAKU FAN SHAPE PROBLEMS

KARMELITA PJANIĆ, MIRJANA VUKOVIĆ

Abstract

The paper discuss three sangaku problems on relationship among circles inscribed in
the sector of an annulus, which is due to its shape, called a fan.

1. Introduction

In the period 17th to 19th century, so called Edo period when Japan closed
its doors to the outer world, traditional Japanese mathematics (wasan), was
developed. In Japan in that times, there was no official academia, so math-
ematics was developed not only by scholars but also by mathematical laity,
that had found mathematics divine. Mathematics enthusiasts dedicated to
shrines and temples the wooden tablets on which mathematics problems
were written. Those votive tablets are called sangaku. The problems fea-
tured on the sangaku are typical problems of japanese mathematics (wasan)
and often involve many circles which is uncommon in western mathematics.
Each tablet states a theorem or a problem. It is a invitation and a chal-
lenge to other experts to prove the theorem or to solve the problem. Most
sangaku contain only the final answer to a problem, rarely a detailed solu-
tion. It is a work of art as well as a mathematical statement. Sangaku are
perishable, and the majority of them have decayed and disappeared during
the last two centuries.

2. Main results

The first problem can be found on the top right corner of the Katayamahiko
shrine tablet (Fukagawa, Rothman, 2008).

• Karmelita Pjanić — e-mail: kpjanic@gmail.com
Faculty of Pedagogy, Univesity of Bihać.
• Mirjana Vuković — e-mail: mvukovic@anubih.ba
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PROBLEM 1. As shown in Figure 1, in a sector of annulus of radius
R, two circles of radius r are tangent to each other and touch the sector
internally. A small circle of radius t touches both the sector and a chord of
length d. If d = 3.62438 and 2t = 0.34, find 2r.
Tablet contains an answer: 2r = 3, 025.

Figure 1

Solution. Let O be center of concentric circles that determine the circu-
lar ring, C1 and C2 two equal circles inscribed in circular ring. Denote by
A, B and C the points at which the observed circles touch the edge of the
circular ring, with F the touch point of two equal circles, and with D the
point where the chord AB touches the small circle (Figure 2).

Figure 2

Applying the Pythagorean theorem on the rectangular triangle 4ODA
gives
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R2 = (R− 2t)2 +

(
d

2

)2

which implies

(1) R =
d2

16t
+ t

Similarly, using the Pythagorean theorem to 4O1FO (where O1 is the
center of circle C1), we obtain

(R− r)2 = r2 + (R− r − 2t)2

whence it follow

(2) R = r + t+
r2

4t

Equating the expressions (1) and (2) for R and solving the resulting
quadratic for r gives

r =

√
4t2 +

d2

4
− 2t

If d = 3, 62438 and 2t = 0, 34, then r = 1, 5038 or 2r = 3, 0076, which is
a slightly different result from the one on the Katayamahiko shrine tablet.

The next, central problem in this paper, is given on sangaku in the tem-
ple Isaniwa in Ehime Prefecture, well known for its 22 tablets preserved to
present day. Tablet (Figure 3) is dated in 1873 (Syomin-no-sanjyutsuten,
2005).

PROBLEM 2. Let fan makes a third of an annulus, within which one
inscribed seven circles: one eastern, two western, two southern and two
northern circles. If the diameter of the southern circles given, what is the
diameter of the northern circle?
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Figure 3

Solution. Denote by C1 eastern circle, and by C2, C3 and C4 western,
southern and northern circle respectively. Let O1, O2, O3, O4 are centers of
circles C1, C2, C3 and C4 respectively, and r1, r2, r3, r4 their radii. Let R
is the radius of the annulus outer circle and O its center. Let us introduce
other symbols as in Figure 4.

Figure 4

In 4OSN there are ∠SON = 60◦ and ∠OSN = 90◦. Hence,

|OS| = s = R · cos 60◦ = R

2

|SN | = t = R · sin 60◦ = R
√
3

2
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Radius r1 of the circle C1 is obtained as follows:

|OP | = R and |OP | = |OS|+ |SP |
i.e.

R = s+ 2r1

from which we obtain

r1 =
R− s

2
=

R

4
.

Notice rectangular triangles4OH1O2 and4O1H1O2. In4OH1O2 there
is

(3) |H1O2|2 = |OO2|2 − |OH1|2

and in 4O1H1O2

(4) |H1O2|2 = |O2O1|2 − |O1H1|2.
From (3) and (4) we get

|OO2|2 − |OH1|2 = |O2O1|2 − |O1H1|2,
respectively

(R− r2)
2 −

(
R

2
+ r2

)2

=

(
R

4
+ r2

)2

−
(
R

4
− r2

)2

.

Radius r2 of the circle C2 can be expressed using previous equality:

(5) r2 =
3r

16
.

Applying Pythagorean theorem on triangles 4OH2O3 and 4OO3V we
obtain

|OO3|2 = |OH2|2 + |H2O3|2

and introducing notation u = |NV |, previous equality becomes(R
2
+ r3

)2
=

(
R

2
− r3

)2

+ (t− u)2 .

Rearranging the last equality and taking into account (2) we obtain

(6)
R
√
3

2
− u =

√
2Rr3.
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In 4OO3V there is

|OO3|2 = |OV |2 + |V O3|2,

respectively (
R

2
+ r3

)2

= r23 + (R− u)2 .

Finally,

(7)
R2

4
+Rr3 = (R− u)2.

Radius r3 of the circle C3 and segment u = |NV | can be expressed in
terms of R using (6) and (7)

(8) r3 =
3
(
2−
√
3
)
R

2
(
2 +
√
3
) · u =

3R

2
(
2 +
√
3
) .

Lastly, to determine the required radius r4 of northern circle, we will
introduce notations:

|O1H3| = p,

|O4H3| = q,

|O2H4| = z.

In 4OH3O4 there is

(R− r4)
2 =

(
R

2
+ r1 + p

)2

+ q2

and in 4O1O2H1 there is

(r1 + r2)
2 = (r1 − r2)

2 + (q + z)2 ,

wheres

q + z = 2
√
r1r2.
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Figure 5

Applying the Pythagorean theorem on the rectangular triangles4O4H4O2

and 4O1H3O4 respectively (Figure 5), we obtain

(r3 + r4)
2 = (p+ r1 − r2)

2 + z2,

p2 + q2 = (r1 + r4)
2 .

Segments p, q, z, r4 that appeared in previous equalities can be expressed
in term if R:

r4 =
3

193

(
25− 12

√
3
)
R,

p =
1

772

(
−307 + 240

√
3
)
R,

q =
2

193

(
3 + 14

√
3
)
R,

z =
3

772

(
−8 + 27

√
3
)
R.

Finally, observing the ratio of radii of circles C4 and C3 gives
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r4
r3

=
3

193

(
25− 12

√
3
)
R

3(2−
√
3)R

2(2+
√
3)

= · · · = 62 +
√
3 · 1024

193

and

(9) r4 = r3 ·
62 +

√
3 · 1024

193
.

Equality (9) corresponds to the solution stated on sangaku in temple
Isaniwa.

The third problem dates back to 1865. and is given on sangaku in Mei-
seirinji temple (Syomin-no-sanjyutsuten, 2005). In solution of this problem
inversion technique will be used. Theorem of inversion of circles will be
stated without proof.

Theorem 1. A circle, its inverse, and the center of inversion are collinear.

PROBLEM 3. Inside a fan-shaped sector five circles touch each other;
one is a "red" circle of radius r1, two are "green" circles of radius r2, and
two are "white" circles of radius r3. The radius of the sector is r, and the
circles touch each other symmetrically about the center O. We take the angle
of the sector to be variable and r constant. As the angle is varied, the inner
radius of the sector t is adjusted so that the five circles continue to touch;
r3 is also allowed to vary, while the other radii remain constant.
Show that 2 (r1 + r3) = r, when r3 is a maximum.

Figure 6
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Solution. Let C1 denote "red" circle, C2 and C2′ two "green" circles
and C3 and C3′ two "white" circles, as in Figure 6. Under conditions of the
problem, it is sufficient to consider one half of the figure given.
Assume initially that the center O and the centers O2 and O3 of the circles
C2 and C3 are collinear. Then, Figure 7 shows that

(10) r = t+ 2r1 = t+ 2r3 + 2r2

or

(11) r1 = r2 + r3.

Figure 7

Similar triangles 4OO3C and 4OO2D give

r3
t+ r3

=
r2

t+ 2r3 + r2
.

Eliminating t by previous equality and using (10) give
r3

r − 2r2 − r3
=

r2
r − r2

or

(12) r3 =
1

r

(
−2r22 + rr2

)
.

Expression (12) can be rewritten as

r3 =
1

r

[
−2
(
r2 −

r

4

)2
+

r2

8

]
.
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Given condition of constant radius r, last expression implies that r3 is
maximized and equals r

8 when r2 =
r
4 . This and (11) imply

2r1 + 2r3 = 2r2 + 4r3 = r.

Therefore, the statement is proven in case of collinear centers of circles with
radii r, r2 and r3.
It remains to prove that the aforementioned centers of circles collinear. In
this purpose, consider a Figure 7 and make use of Theorem 1. Choosing O
as the center of inversion, if we can invert r2 into r3 and vice versa, we have
shown that the two circles are collinear with O, and the rest of the proof
follows.
To do this, notice that if in Figure 7 we invert circle with radius t into circle
with radius r, and vice versa, then circle with radius r1 must invert into
itself in order to keep the points of tangency A and B invariant. Similarly,
circles with radii r3 and r2 are tangent to circle with radius r1 and to the
line OE at the points C and D. In order that all points of tangency are
preserved, in particular that C inverts into D and vice versa, then circle
with radius r2 must invert into circle with radius r3, and the reverse. To
do this, merely choose the radius of inversion k such that k2 = rt.

3. Final remarks

In the Edo era of the 18th and 19th centuries in Japan, ordinary people
enjoyed mathematics in daily life, not as a professional study but rather as
an intellectual popular game and a recreational activity. Sangaku usually
don’t provide a proof of the theorem, and even books of them have been
published in Japan for many years, some theorems are still unsolved. It
gives opportunity to researchers to explore and decrypt sangaku problems
as well as to link similar problems. Sangaku can be used to stimulate the
interest of students in mathematics as many of sangaku problems are a
source of pleasure and challenge.
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SOME REMARKS ABOUT K-CONTINUITY OF
K-SUPERQUADRATIC MULTIFUNCTIONS

KATARZYNA TROCZKA-PAWELEC

Abstract

Let X = (X,+) be an arbitrary topological group. The set-valued function F : X →
n(Y ) is called K-superquadratic iff

F (x+ y) + F (x− y) ⊂ 2F (x) + 2F (y) +K,

for all x, y ∈ X, where Y denotes a topological vector space and K is a cone.
In this paper the K−continuity problem of multifunctions of this kind will be con-

sidered with respect to K−boundedness. The case where Y = RN will be considered
separately.

1. Introduction

LetX = (X,+) be an arbitrary topological group. A real-valued function
f is called superquadratic, if it fulfils inequality

(1) 2f(x) + 2f(y) ≤ f(x+ y) + f(x− y), x, y ∈ X.

If the sign ” ≤ ” in (1) is replaced by ” ≥ ”, then f is called subquadratic.
The continuity problem of functions of this kind was considered in [2]. This
problem was also considered in the class of set-valued functions. By the set-
valued functions we understand functions of the type F : X → 2Y , where
X and Y are given sets. Throughout this paper set-valued functions will
be always denoted by capital letters. A set-valued function F is called
superquadratic if it satisfies inclusion

(2) 2F (x) + 2F (y) ⊂ F (x+ y) + F (x− y), x, y ∈ X,

and subquadratic set-valued function, if it satisfies inclusion defined in this
form

(3) F (x+ y) + F (x− y) ⊂ 2F (x) + 2F (y), x, y ∈ X.

• Katarzyna Troczka-Pawelec — e-mail: k.troczka@ujd.edu.pl
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For single-valued real functions properties of subquadratic and superquadratic
functions are quite analogous and, in view of the fact that if a function f
is subquadratic, then the function −f is superquadratic and conversely, it
is not necessary to investigate functions of these two kinds individually. In
the case of set-valued functions the situation is different. Even if proper-
ties of subquadratic and superquadratic set-valued functions are similar, we
have to proved them separately. If the sign ” ⊂ ” in the inclusions above
is replaced by ” = ”, then F is called quadratic set-valued function. The
class of quadratic set-valued functions is an important subclass of the class
of subquadratic and superquadratic set-valued functions. Quadratic set-
valued functions have already extensive bibliography (see W. Smajdor [5],
D. Henney [1] and K. Nikodem [4]). The continuity problem of subquadratic
and superquadratic set-valued functions was considered in [6] and [7].

Adding a cone K in the space of values of a set-valued function F lets
us consider a K-superquadratic set-valued function , that is solution of the
inclusion

(4) F (x+ y) + F (x− y) ⊂ 2F (x) + 2F (y) +K, x, y ∈ X.

The concept of K-superquadraticity is related to real-valued superquadratic
functions. Note, in the case when F is a single-valued real function and
K = [0,∞), we obtain the standard definition of superquadratic functionals
(1). Similarly, if a set-valued function F satisfies the following inclusion

(5) 2F (x) + 2F (y) ⊂ F (x+ y) + F (x− y) +K, x, y ∈ X

then it is called K-subquadratic. The K-continuity problem of multifunc-
tion of this kind was considered in [9]. In this paper we will consider the K-
continuity problem for K-superquadratic set-valued functions. Likewise as
in functional analysis we can look for connections between K-boundedness
and K-semicontinuity of set-valued functions of this kind.

Assuming K = {0} in (4) and (5) we obtain the inclusions (2) and (3).
Let us start with the notations used in this paper. Let Y be a topological

vector space. We consider the family n(Y ) of all non-empty subsets of as a
topological space with the Hausdorff topology. In this topology the set

NW (A) := {B ∈ n(Y ) : A ⊂ B +W,B ⊂ A+W}

where W runs the base of neighbourhoods of zero in Y , form a base of
neighbourhoods of a set A ∈ n(Y ). By cc(Y ) we denote the family of all
compact and convex members of n(Y ). The term set-valued function will
be abbreviated to the form s.v.f.

Now we present here some definitions for the sake of completeness. Recall
that a set K ⊂ Y is called a cone iff K + K ⊂ K and sK ⊂ K for all
s ∈ (0,∞).
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Definition 1. (cf. [3]) A cone K in a topological vector space Y is said to
be a normal cone iff there exists a base W of zero in Y such that

W = (W +K) ∩ (W −K)

for all W ∈W.

Definition 2. (cf. [3]) An s.v.f. F : X → n(Y ) is said to be K-upper semi-
continuous (abbreviated K−u.s.c.) at x0 ∈ X iff for every neighbourhood V
of zero in Y there exists a neighbourhood U of zero in X such that

F (x) ⊂ F (x0) + V +K

for every x ∈ x0 + U .

Definition 3. (cf. [3]) An s.v.f. F : X → n(Y ) is said to be K-lower semi-
continuous (abbreviated K−l.s.c.) at x0 ∈ X iff for every neighbourhood V
of zero in Y there exists a neighbourhood U of zero in X such that

F (x0) ⊂ F (x) + V +K

for every x ∈ x0 + U .

Definition 4. (cf. [3]) An s.v.f. F : X → n(Y ) is said to be K−continuous
at x0 ∈ X iff it is both K−u.s.c. and K−l.s.c. at x0. It is said to be
K−continuous iff it is K−continuous at each point of X.

Note that in the case where K = {0} the K−continuity of F means its
continuity with respect to the Hausdorff topology on n(Y ).

In the proof of the main theorems we will use some known lemmas ( see
Lemma 1.1, Lemma 1.3, Lemma 1.6 and Lemma 1.9 in [3]). The first
lemma says that for a convex subset A of an arbitrary real vector space Y
the equality (s + t)A = sA + tA holds for every s, t ≥ 0 or (s,t<0). The
second lemma says that in a real vector space Y for two convex subsets
A,B the set A+B is also convex. The next lemma says that if A ⊂ Y is a
closed set and B ⊂ Y is a compact set, where Y denotes a real topological
vector space, then the set A+B is closed. For any sets A,B ⊂ Y , where Y
denotes the same space as above, the inclusion A + B ⊂ A+B holds and
equality holds if and only if the set A+B is closed.

Let us adopt the following three definitions which are natural extension
of the concept of the boundedness for real-valued functions.

Definition 5. An s.v. f. F : X → n(Y ) is said to be K−lower bounded on
a set A ⊂ X iff there exists a bounded set B ⊂ Y such that F (x) ⊂ B +K
for all x ∈ A. An s.v. f. F : X → n(Y ) is said to be K−lower bounded at
a point x ∈ X iff there exists a neighbourhood Ux of zero in X such that F
is K−lower bounded on a set x+ Ux
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Definition 6. An s.v. f. F : X → n(Y ) is said to be K−upper bounded on
a set A ⊂ X iff there exists a bounded set B ⊂ Y such that F (x) ⊂ B −K
for all x ∈ A. An s.v. f. F : X → n(Y ) is said to be K−upper bounded at
a point x ∈ X iff there exists a neighbourhood Ux of zero in X such that F
is K−upper bounded on a set x+ Ux

Definition 7. An s.v. function F : X → n(Y ) is said to be locally K-lower
(upper) bounded in X if for every x ∈ X there exists a neighbourhood Ux

of zero in X such that F is K-lower (upper) bounded on a set x + Ux. It
is said to be locally K-bounded in X if it is both locally K-lower and locally
K-upper bounded in X.

Definition 8. We say that 2-divisible topological group X has the property
(12) iff for every neighbourhood V of zero there exists a neighbourhood W of
zero such that 1

2W ⊂W ⊂ V .

For the K−superquadratic set-valued functions the following two theo-
rems hold.

Theorem 1. (cf. [8]) Let X be a 2-divisible topological group with property
(12), Y locally convex topological real vector space and K ⊂ Y a closed
normal cone. If a K-superquadratic s.v.f. F : X → cc(Y ) is K-u.s.c. at
zero, F (0) = {0} and locally K- bounded in X, then it is K-u.s.c. in X.

Theorem 2. (cf. [10]) Let X be a 2-divisible topological group, Y locally
convex topological real vector space and K ⊂ Y a closed normal cone. If a
K-superquadratic s.v.f. F : X → cc(Y ) is K-u.s.c. at zero, F (0) = {0} and
locally K- bounded in X then it is K-l.s.c. in X.

Let us note, that Theorem 1 and Theorem 2, by Definition 4, yield di-
rectly the following main theorem for K-superquadratic multifunctions.

Theorem 3. Let X be a 2-divisible topological group with property (12), Y
locally convex topological real vector space and K ⊂ Y a closed normal cone.
If a K-superquadratic s.v.f. F : X → cc(Y ) is K-u.s.c. at zero, F (0) = {0}
and locally K- bounded in X, then it is K-continuous in X.

Let us introduce the following definitions.

Definition 9. An s.v. f. F : X → n(Y ) is said to be weakly K−lower
bounded on a set A ⊂ X iff there exists a bounded set B ⊂ Y such that
F (x)

⋂
(B +K) 6= ∅ for all x ∈ A.

Definition 10. An s.v. f. F : X → n(Y ) is said to be weakly K−upper
bounded on a set A ⊂ X iff there exists a bounded set B ⊂ Y such that
F (x)

⋂
(B −K) 6= ∅ for all x ∈ A.
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Definition 11. An s.v. f. F : X → n(Y ) is said to be locally weakly
K−upper bounded in X iff for every x ∈ X there exists a neighbourhood Ux

of zero in X such that F is K−upper bounded on a set x+ Ux.

Definition 12. An s.v. f. F : X → n(Y ) is said to be locally weakly
K−lower bounded in X iff for every x ∈ X there exists a neighbourhood Ux

of zero in X such that F is K−lower bounded on a set x+ Ux.

Definition 13. An s.v. f. F : X → n(Y ) is said to be locally weakly K−
bounded in X iff for every x ∈ X there exists a neighbourhood Ux of zero in
X such that F is weakly K−lower and weakly K−upper bounded on a set
x+ Ux.

Clearly, if F is K−upper ( K−lower ) bounded on a set A, then it is
weakly K−upper ( K−lower ) bounded on a set A. In the case of single-
valued functions these definitions coincide.

For theK−superquadratic set-valued functions the following lemma holds.

Lemma 1. Let X be a 2−divisible topological group satisfying condition(
1
2

)
, Y topological vector space and K ⊂ Y a cone. Let F : X → B(Y ) be

a K−superquadratic s.v.f. , such that F (0) = {0} and G : X → n(Y ) be an
s.v.f. with

(6) G(x) ⊂ F (x) +K

for all x ∈ X.

If F is K−lower bounded at zero and G is locally weakly K-upper bounded
in X , then F is locally K−lower bounded in X.

Proof. Let x ∈ X. There exist a bounded set B1 ⊂ Y and a symmetric
neighbourhood U1 of zero in X such that

G(x− t) ∩ (B1 −K) 6= ∅, t ∈ U1,

which implies that that for all t ∈ U1 there exists a ∈ G(x − t) and a ∈
(B1 −K). Consequently, we get

(7) 0 = a− a ∈ G(x− t)−B1 +K

for all t ∈ U1. Since F is K−lower bounded at zero, there exist a symmetric
neighbourhood U2 of zero in X and a bounded set B2 ⊂ Y such that

(8) F (t) ⊂ B2 +K, t ∈ U2.

Let Ũ be a symmetric neighbourhood of zero in X with 1
2 Ũ ⊂ Ũ ⊂ U1∩U2.

Let t ∈ 1
2 Ũ . Using (6), (7) i (8), we obtain

F (x+t)+0 ⊂ F (x+t)+G(x−t)−B1+K ⊂ F (x+t)+F (x−t)−B1+K ⊂
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⊂ 2F (x) + 2F (t)−B1 +K ⊂ 2F (x) + 2B2 −B1 +K.

Define B̃ := 2F (x) + 2B2 − B1. Since F (x) is a bounded set, then the set
B̃ is also bounded as the sum of bounded sets. Therefore

F (x+ t) ⊂ B̃ +K, t ∈ 1

2
Ũ ,

which means that F is locally K−lower bounded in X. �

In the case of K-superquadratic multifunctions we require Y space to
be locally bounded topological vector space. Then the following theorem
holds.

Theorem 4. Let X be a 2-divisible topological group with property (12), Y
locally convex topological vector space and K ⊂ Y a closed normal cone. If
a K-superquadratic s.v.f. F : X → cc(Y ) is K-u.s.c. at zero, F (0) = {0}
and locally K- upper bounded in X, then it is K-continous in X.

Proof. Let W be a bounded neighbourhood of zero in Y . Since F is K-u.s.c.
at zero and F (0) = {0}, then there exists a neighbourhood U of zero in X
such that

F (t) ⊂ V +K

for all t ∈ U , which means that F isK-lower bounded at zero. The condition
of locally K-upper boundedness in X implies F is locally K-weakly upper
bounded in X. By Lemma 1 (G = F ) F is locally K-lower bounded in X.
Consequently by Theorem 3 F is K−continuous at each point of X. �

2. The case n(RN )

Now we consider the case where the space of values is n(RN ). In our
next proof, we will use known following lemma.

Lemma 2. (cf. [9]) Let Y be a topological vector space and K be a cone in
Y . Let A,B,C be non-empty subsets of Y such that A+ C ⊂ B + C +K.
If B is convex and C is bounded then A ⊂ B +K.

For theK−superquadratic set-valued functions the following lemma holds.

Lemma 3. Let X be a topological group and K a closed cone in RN . Let
F : X → cc(RN ) be a K−superquadratic s.v.f. with F (0) = {0}. If F is
K-l.s.c. at some point x0 ∈ X, then it is K-l.s.c. at zero.

Proof. Let W be a neighbourhood of zero in Y .There exists a convex neigh-
bourhood V of zero in Y such that the set V is compact with 3V ⊂ W .
Since F is K-l.s.c. at x0 ∈ X then there exists a symmetric neighbourhood
U of zero in X such that

(9) F (x0) ⊂ F (x0 + t) + V +K,
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(10) F (x0) ⊂ F (x0 − t) + V +K,

for all t ∈ U .
Let t ∈ U . By convexity of the set F (x0) and by (9) i (10), we obtain

2F (x0) ⊂ F (x0 + t) + F (x0 − t) + 2V +K ⊂ 2F (x0) + 2F (t) + 2V +K.

Then

(11) F (x0) + {0} ⊂ F (xo) + F (t) + V +K t ∈ U.

Since F (x0) is a bounded set and F (t)+V is a convex set, then by Lemma
2, we have

{0} ⊂ V + F (t) +K

for all t ∈ U . Note that the set V +F (t)+K is closed as a sum of compact
and closed set. Consequently, by condition F (0) = {0}, we obtain

F (0) ⊂ V + F (t) +K ⊂ F (t) +W +K

for all t ∈ U , which means F is K-l.s.c. at zero. �

This article is the introduction to the discussion on the K-continuity
problem for K-superquadratic set-valued functions. In the theory of K-
subquadratic and K-superquadratic set-valued functions an important role
is played by theorems giving possibly weak conditions under which such
multifunctions are K-continuous.
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Abstract

Two Witt rings that are not strongly isomorphic (i.e., two Witt rings over two fields
that are not Witt equivalent) have different groups of strong automorphisms. Therefore,
the description of a group of strong automorphisms is different for almost every Witt
ring, which requires the use various tools in proofs. It is natural idea to use computers
to generate strong automorphisms of the Witt rings, which is especially effective in the
case of the finitely generated Witt rings, where a complete list of strong automorphisms
can be created. In this paper we present the algorithm that was used to generate strong
automorphisms from the infinite group of strong automorphisms of the Witt ring of ra-
tional numbers W (Q).
Keywords: algebra, rational self-equivalences, Witt ring, strong automorphism, algo-
rithm, automatic search

1. Introduction

One of fundamental notions in algebraic number theory of quadratic
forms is introduced in [11] ring called nowadays Witt ring. This ring car-
ries information about the behaviour of all quadratic forms over fixed field,
hence the structure of Witt ring depends strongly on the field. Two fields are
said to be Witt equivalent if their Witt rings are isomorphic and considerd
isomorpism preserves dimension of quadratic forms (strong isomorphism).
We consider strong automorphisms of Witt rings and from above inndicate
that two non-isomorphic Witt rings have different groups of strong auto-
morphisms. Therefore the investigation of strong automorphisms of Witt
rings is a difficult task because of variety of structure of Witt rings. It is a
little easier to determine the groups of strong automorphisms of the Witt
rings, which are generated by the finite groups of squares classes. In simple
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cases one can list all strong automorphisms by hand. In rings with more
complex structures, the natural idea is to use a computer to generate all
strong automorphisms. Previous attempts have shown the effectiveness of
algorithmic methods in linear algebra (see for example [3]). In literature
there are descriptions of groups of strong automorphisms for many wide
classes of Witt rings: [4], [5], [7], [8]. Some of the results were verified using
computer programs [9].

The search for strong automorphisms is more difficult in the case of Witt
rings, which are not finitely generated. The first step in this field may be the
result from [1], where it has been shown that the group of strong automor-
phisms of global fields is uncountable. In this article, we deal with strong
automorphisms of the Witt ring W (Q) of the field of rational numbers as a
special case of Witt ring of a global field. We present the algorithms used
in the computer program that was used in [6] to generate strong automor-
phisms of the Witt ring W (Q).

2. Algebraic background

In [2] authors showed that two global fields are Witt equivalent (and
their Witt ring are strong isomorphic) if and only if they are Hilbert-symbol
equivalennt. A Hilbert-symbol equivalence of two global fields K and L is
a pair (T, t), where T : Ω(K) → Ω(L) is a bijection between the sets of
primes of these fields and t : K∗/K∗2 → L∗/L∗2 is an isomorphism of their
square class groups which preserves Hilbert symbols with respect to the
corresponding primes, i.e.

(a, b)p = (t(a), t(b))T (p) for all a, b ∈ K∗/K∗2, p ∈ Ω(K).

The Hilbert symbol equivalence, where K = L is called Hilbert-symbol self-
equivalence of K.

We conscider the case K = L = Q. Using results from [2] we con-
clude that for every pair (T, t), which is a Hilbert-symbol self equivalence
of the field Q (called rational self-equivalence), the map 〈a1, . . . , an〉 →
〈t(a1), . . . , t(an)〉 induces a strong automoorphism of Witt ring W (Q) of
the field of rational numbers. Conversely, every strong automorphism of
W (Q) determines uniquely a rational self-equivalence (T, t).

In this case we can deal with prime numbers instead of prime ideals and
Hilbert symbols depends only on Legendre symbols ([6], Lemma 2.1). The
construction of rational self-equivalences presented in [6] bases on the notion
of small equivalence introduced in [2]. To make the reading of the next part
easier, we will cite some notions and several facts proved in [6].

Let P denotes the set of prime numbers together with the symbol∞. For
every prime number there is defined a completion Qp of the field Q with
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the help of valuation vp called p-adic number field. Moreover we agree, that
Q∞ = R is a completion of the field Q at the usual absolute value.

A finite, nonempty set S ⊂ P containing 2 and ∞ is called sufficiently
large. Let S be sufficiently large set of prime numbers S = {p1 . . . , pn} and
assume that p1 = ∞, p2 = 2. The set of S-singular elements is defined as
follows:

ES = {x ∈ Q∗ : vp(x) ≡ 0 (mod 2) for all p /∈ S}.
Notice that ES is a subgroup of the multiplicative group of the field Q
containing all squares of rational numbers. Therefore the quotient group
ES/Q∗2 is a subgroup of the group Q∗/Q∗2. By the definition of the set ES

every element x ∈ Q has the factorization

x = (−1)e122k2+e2p2k3+e3
3 · · · p2kn3+en

n q2l11 · · · q
2lm
m ,

where q1, q2, . . . , qm /∈ S are prime numbers, ki, li ∈ Z and ei ∈ {0, 1}. Then
xQ∗2 = (−1)e12e2pe33 · · · p

en
n Q∗2.

It follows that the elements of the group ES/Q∗2 are represented by the
integers of the form (−1)e12e2pe33 · · · penn in the unique way.

For every p ∈ P the natural imbedding of the field Q in the field Qp in-
duces the group homomorphism ip : Q∗/Q∗2 → Q∗p/Q∗2p , which is surjective.
For the finite set S = {p1, . . . , pn} ⊂ P we get the dual homomorphism
diagS : Q∗/Q∗2 →

∏
p∈S Q∗p/Q∗2p defined by

diagS(a) = [ip1(a), . . . , ipn(a)] = [aQ∗2p1 , . . . , aQ
∗2
pn ].

Definition 1. Let S be sufficiently large set of prime numbers defined as
above. A small S-equivalence is a pair R = ((tp)p∈S , T ), where
1) T : S → T (S) is a bijection,
2) there exists the isomorphism of the group of square classes tS : ES/Q∗2 →
ET (S)/Q∗2,
3) (tp)p∈S is a family of local isomorphisms tp : Q∗p/Q∗2p → Q∗T (p)/Q

∗2
T (p)

preserving Hilbert symbols, i.e.

(a, b)p = (tp(a), tp(b))T (p) for all a, b ∈ Q∗p/Q∗2p ,

4) the following diagram commutes

ES/Q∗2
iS−→

∏
p∈S

Q∗p/Q∗2p

↓ tS ↓∏
tp

ET (S)/Q∗2
iT (S)−→

∏
p∈S

Q∗T (p)/Q
∗2
T (p)



70 L. STȨPIEŃ AND M. R. STȨPIEŃ

It was shown in [6] that any small Sk-equivalence RSk
= ((tp)p∈Sk

, T ),
where Sk = {∞, 2, p3, p4, . . . , pk} is sufficiently large set of prime numbers
can be extended to some small S′k+1-equivalence, where S

′
k+1 : = S′k∪{qk+1}

and there is infinitely many prime numbers, which can be choosen as qk+1

provided they fulfill the following two (sufficent) condoitions:
1) pk+1 ≡ qk+1 (mod 8),
2)
(

pi
pk+1

)
=
(

qi
qk+1

)
for all 3 ≤ i ≤ k

and the last Hilbert symbols depend only on Legendre symbols. Above con-
ditions ensure comutativity of suitable diagrams (cf. [6]). In conclusion any
small equivalence can be extended to some rational self-equivalence, which
induces strong automorphism of Witt ring W (Q) of the field of rational
numbers.

3. Algorithm for building of sufficiently large sets

The computer program that performs the search of rational self-equiva-
len-ces consists of several stages and must be stopped at some point (because
it is not possible to generate prime numbers infinitely).

We start from the sufficiently large sets S′ = SP ′ = {∞, 2}. Let us first
remark that the definition of small equivalence imposes some restrictions
on the mapping of T . Namely T (∞) = ∞ and T (2) = 2. Then we take
the smallest prime number p3 /∈ S′, i.e. p3 = 3 and now we get expanded
set S′ = {∞, 2, 3}. Then we search for prime number q3 which is outside of
SP ′ and fulfills p3 ≡ q3 (mod 8). It turns out to be prime number 11. Let
us denote this step of construction in the following way:
1) p3 = 3→ 11 = q3.
(Notice, that we have to assume that p3 6= q3. If we take p3 = q3 and
continue in this way, we get identity).

Next we take the smallest prime number q4, which was not used in the
sequence SP ′ = {qi}∞i=1. It is number 3. We search for q4 = 3 the smallest
prime number p4, which has required properties:
i) q4 ≡ p4 (mod 8) and
ii)
(
q3
q4

)
=
(
p3
p4

)
.

It is the number 19. Hence we denote the second step of the construction:
2) p4 = 19← 3 = q4.
Further steps of construction lead to the following sequences of prime num-
bers
S : 3, 19, 5, 13, 7, 1103, 11, 6329, 17, 347, 23, 77551, 29, 138581, 31,
SP : 11, 3, 13, 5, 223, 7, 283, 17, 2689, 19, 31159, 23, 109229, 29, 1010903,
what gives the following sufficiently large sets:
S′ = {∞, 2, 3, 19, 5, 13, 7, 1103, 11, 6329, 17, 347, 23, 77551, 29, 138581, 31},
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SP ′ = {∞, 2, 3, 11, 3, 13, 5, 223, 7, 283, 17, 2689, 19, 31159, 23, 109229, 29, 1010903}
and the map T :
T (∞) =∞,
T (2) = 2,
T (3) = 11,
T (19) = 3,
T (5) = 13,
T (13) = 5,
T (7) = 223,
T (1103) = 7,
T (11) = 283,
T (6329) = 17,
T (17) = 2689,
T (347) = 19,
T (23) = 31159,
T (77551) = 23,
T (29) = 109229,
T (138581) = 29,
T (31) = 1010903
which easily shows how the next small equivalences are constructed. The
limitation to 15 steps is due to the rapid increase of searched prime numbers.
This process, continued into infinity, gives us a rational self-equivalence.

Of course the choice of another q3 gives another sequences of prime num-
bers pk and qk and the different sequences of small equivalences (for enother
examples of rational self-equivalences searched in this way see [6]).

Now we show how we construct two sequences S and SP of prime num-
bers using Algorithm 1.

Algorithm built_ sequences() inputs the set P of prime numbers gen-
erated by sieve of Eratosthenes. It uses the function FindElement() as
defined in Algorithm 2. First we add 3 to the set S as a smallest prime
number (line 2). The variable p is initilized as 3 (line 4). (The variable p
and q are used to build the sets S and SP , respectively.) q is initialized as 0
(line 3). As long as the variable i is less than 15 the algorithm performs the
following: for odd runs it searches a smallest prime number q by using func-
tion FindElement() (line 7) and adds it to the set SP ; next finds the first
free number prime by using function FirstFree() (line 9); gets it to q and
adds it to the set SP ; for even runs the algorithm performs steps described
above for the variable p and the set S. Algorithm built_ sequences()
terminates when i is greater then 15 and returns two sets S and SP .

The function FindElement() inputs the set P of prime numbers, the
sets S and SP , the element el and the variable i. It uses the function
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Algorithm 1: function built_ sequences(P)
Variables:

S (sequence of prime numbers, initialized as ∅)
SP (sequence of prime numbers, initialized as ∅
i, q, p (integer)

Returned values:
SP, S /* two sequences of prime numbers*/

1: i← 1
2: S ← S ∪ {3}
3: q ← 0
4: p← 3
5: while i 6 15 do
6: if i mod 2 == 1 then
7: q ← FindElement(P, S, SP, p, i)
8: SP ← SP ∪ {q}
9: q ← FirstFree(P, SP )
10: SP ← SP ∪ {q}
11: else
12: p← FindElement(P, S, SP, q, i)
13: S ← S ∪ {p}
14: p← FirstFree(P, S)
15: S ← S ∪ {p}
16: end if
17: i← i + 1
18: end while
19: return S,SP

Legrende() defined as one of standard algorithm calculated of Legendre
symbol [10]. Algorithm searches for the prime number j (line 3) such that
j 6= el AND (j−el) mod 8 == 0 (line 4). Algorithm terminates and returns
j when for j and el and sets S and SP all Legrende symbols Left and Right
are equal (lines 5-17), respectively.

The algorithms were implemented in C++. The experiments were carried
out on an notebook Intel Core i5-5200U CPU 2.20 GHz, 8 GB RAM with
Linux operation system.

4. Final remarks

In this case the obtained results have shown the usefulness of the com-
puter. The value of the greatest searched prime number in the example de-
scribed in previous section shows that it would be extremely time-consuming
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Algorithm 2: function FindElement(P,S,SP,el,i)
Variables:

result (boolean variable, initialized as False)
j (integer)

Returned values:
j /* prime number*/

1: result← False
2: while NOT result do
3: if i mod 2 == 1 then
4: j ← NextPrime(P, SP )
5: else
6: j ← NextPrime(P, S)
7: end if
8: if j 6= el AND (j − el) mod 8 == 0 then
9: result← True
10: k ← 1
11: while k < i AND result do
12: if i mod 2 == 1 then
13: Left← Legendre(S[k], el)
14: Right← Legendre(SP [k], j)
15: else
16: Left← Legendre(S[k], j)
17: Right← Legendre(SP [k], el)
18: end if
19: result← Left == Right
20: k ← k + 1
21: end while
22: end if
23: end while
24: return j

or impossible at all to do the calculations without a computer. This allows
usu to think that the computer would be useful in solving similar problems
in the future.
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Jan Długosz University in Czȩstochowa,
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